*-АЛГЕБРЫ И ИХ ПРИМЕНЕНИЕ (Украина)

СодержаниеВведение……………………………………………………………………………..4
Глава I. Основные понятия и определения…………………………………….6
§ 1. * - алгебры……………………………………………………………………...6
1.1. Определение * - алгебры……………………………………………………….6
1.2. Примеры…………………………………………………………………………7
1.3. Алгебры с единицей…………………………………………………………….7
1.4. Простейшие свойства * - алгебр……………………………………………….9
1.5. Гомоморфизм и изоморфизм алгебр…………………………………………11
§ 2. Представления ……………………………………………………………….13
2.1. Определение и простейшие свойства представлений……………………….13
2.2. Прямая сумма представлений ………………………………………………..15
2.3. Неприводимые представления………………………………………………..16
2.4. Конечномерные представления……………………………………………….19
2.5. Интегрирование и дезинтегрирование представлений ……………………..20
§ 3. Тензорные произведения……………………………………………………26
3.1. Тензорные произведения пространств……………………………………….26
3.2. Тензорные произведения операторов………………………………………..28
Глава II. Задача о двух ортопроекторах………………………………………..31
§ 1. Два ортопроектора в унитарном пространстве…………………………..31
1.1. Постановка задачи……………………………………………………………..31
1.2. Одномерные *-представления *-алгебры P2 ……………………………….31
1.3. Двумерные *-представления *-алгебры P2 ……………………………….32
1.4. n-мерные *-представления *-алгебры P2 …………………………………35
1.5. Спектральная теорема…………………………………………………………37
§ 2. Два ортопроектора в сепарабельном гильбертовом пространстве……39
2.1. Неприводимые *-представления *-алгебры P2 …………………………...39
2.2. Спектральная теорема…………………………………………………………41
Глава III. Спектр суммы двух ортопроекторов ……………………………...45
§ 1. Спектр суммы двух ортопроекторов в унитарном пространстве……...45
1.1. Спектр ортопроектора в гильбертовом пространстве……………………….45
1.2. Постановка задачи……………………………………………………………..45
1.3. Спектр в одномерном пространстве………………………………………….45
1.4. Спектр в двумерном пространстве……………………………………….…..46
1.5. Спектр в n-мерном пространстве……………………………………………..47
1.6. Линейная комбинация ортопроекторов………………………………………49
§ 2. Спектр суммы двух ортопроекторов в сепарабельном
гильбертовом пространстве …………………………………………………….52
2.1. Спектр оператора А = Р1 +Р2 …………………………………………………52
2.2. Спектр линейной комбинации А = аР1 + bР2 (0<а Заключение………………………………………………………………………..55
Литература ………………………………………………………………………..56


ВВЕДЕНИЕ
ВведениеПусть Н - гильбертово пространство, L(Н) - множество непрерывных линейных операторов в Н. Рассмотрим подмножество А в L(Н), сохраняющееся при сложении, умножении, умножении на скаляры и сопряжении. Тогда А - операторная *-алгебра. Если дана абстрактная *-алгебра А, то одна из основных задач теории линейных представлений (*-гомоморфизмов А в L(Н)) - перечислить все ее неприводимые представления (с точностью до эквивалентности).
Теория унитарных представлений групп восходит к XIX веку и связана с именами Г.Фробениуса, И.Шура, В.Бернсайда, Ф.Э. Молина и др. В связи с предложениями к квантовой физике теория унитарных представлений топологических групп, групп Ли, С*-алгебр была разработана И.М.Гельфандом, М.А. Наймарком, И.Сигалом, Ж.Диксмье, А.А. Кирилловым и др. в 60-70-х годах XX века. В дальнейшем интенсивно развивается теория представлений *-алгебр, заданных образующими и соотношениями.
Дипломная работа посвящена развитию теории представлений (конечномерных и бесконечномерных) *-алгебр, порожденных двумя проекторами.
Глава I в краткой форме содержит необходимые для дальнейшего сведения из теории представлений и функционального анализа. В §1 дано определение *-алгебры и приведены простейшие свойства этих алгебр. В §2 излагаются основные свойства представлений, вводятся следующие понятия: неприводимость, эквивалентность, прямая сумма, интегрирование и дезинтегрирование представлений. В §3 определяются тензорные произведения пространств, тензорные произведения операторов и др. (см. [2], [3], [4], [8], [9])
В Главе II изучаются представления *-алгебры P2
P2 = С < p1, p2 | p12 = p1* = p1, p22 = p2* = p2 >,
порожденной двумя самосопряженными идемпотентами, то есть проекторами (см., например, [12]). Найдены все неприводимые *-представления *-алгебры P2, с точностью до эквивалентности., доказаны соответствующие спектральные теоремы.
В §1 рассматриваются только конечномерные *-представления ? в унитарном пространстве Н. Описаны все неприводимые и неэквивалентные *-представления *-алгебры P2 . Неприводимые *-представления P2 одномерны и двумерны:
4 одномерных: ?0,0(p1) = 0, ?0,0(p2) = 0; ?0,1(p1) = 0, ?0,1(p2) = 1;
?1,0(p1) = 1, ?1,0(p2) = 0; ?1,1(p1) = 1, ?1,1(p2) = 1.
И двумерные: , ? (0, 1).
Доказана спектральная теорема о разложении пространства Н в ортогональную сумму инвариантных относительно ? подпространств Н, а также получено разложение ? на неприводимые *-представления. Результаты §1 относятся к математическому фольклору.
В §2 получены основные результаты работы. Для пары проекторов в сепарабельном гильбертовом пространстве Н приведено описание всех неприводимых представлений, доказана спектральная теорема.
В Главе III спектральная теорема для пары проекторов Р1, Р2, применяется к изучению сумм Р1+Р2, аР1+bР2 (0 < a < b). Получены необходимое и достаточное условие на самосопряженный оператор А для того чтобы А = Р1+Р2 или А = аР1+bР2, 0 < a < b, (этот частный случай задачи Г.Вейля (1912 г.) о спектре суммы пары самосопряженных операторов).

Список литературы1. Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовом пространстве, М., Наука, 1966.
2. Березенский Ю.М., Ус Г.Ф., Шефтель З.Г. Функциональный анализ, К., Выща школа, 1990.
3. Браттели У., Робинсон Д. Операторные алгебры и квантовая статистическая механика: С*- W* -алгебры. Группы симметрий. Разложение состояний., М., Мир, 1982.
4. Диксмье Ж. С*-алгебры и их представления. М., Наука, 1974.
5. Кириллов А.А. Элементы теории представлений. М., Наука, 1978.
6. Кужель А.В. Алгебры конечного ранга, С. СГУ, 1979.
7. Ленг С. Алгебра. М., Мир, 1968.
8. Мерфи Д. С*-алгебры и теория операторов. М., Мир, 1998.
9. Наймарк М.А. Нормированные кольца. М., Гостехиздат, 1956.
10. Рудин У. Функциональный анализ. М., Мир, 1975.
11. NishioK, Linear algebra and its applications 66: 169-176, Elsevier Science Publishing Co., Inc., 1985.
12. Samoilenko Y.S., Representation theory of algebras, Springer, 1998.