. Распространение химических элементов во Вселенной12

Содержание1. Распространение химических элементов во Вселенной 3
2. Сущность научного метода познания: эксперимент - теория - практика 9
Список использованной литературы 13

Введение
Элементы тяжелее гелия родились не в звездах, а в момент возникновения Вселенной. По законам термодинамики при высоких плотностях и температурах разогретое вещество и излучение находятся в равновесии. Излучение продолжает движение вместе с веществом в расширяющейся Вселенной и сохраняется до нашего времени. При этом его температура понизилась.
Теория горячей Вселенной объяснила соотношения водорода и гелия в современной Вселенной исходя из ядерных реакций в горячей ранней Вселенной. Большинство звезд состоит из водорода и гелия. Углерод образуется из трех ядер гелия в центре звезды.
Природа щедро разбросала свои материальные ресурсы по нашей планете. Но нетрудно заметить зависимость: чаще всего человек использует те вещества, запасы сырья которых ограничены, и наоборот, крайне слабо использует такие химические элементы и их соединения, сырьевые ресурсы которых почти безграничны. В самом деле, 98,6% массы физически доступного слоя Земли составляют всего восемь химических элементов: железо (4,6%) , кислород (47%), кремний (27,5%), магний (2,1%), алюминий (8,8%), кальций (3,6%), натрий (2,6%), калий (2,5%), никель. Более 95% всех металлических изделий, конструкций самых разнообразных машин и механизмов, транспортных путей производятся из железорудного сырья. Ясно, что такая практика расточительна с точки зрения как исчерпания ресурсов железа, так и энергетических затрат на первичную обработку железорудного сырья.
Глядя на приведенные здесь данные о распространенности восьми названных химических элементов, можно смело утверждать о больших возможностях в использовании алюминия, а затем магния и, может быть, кальция в создании металлических материалов ближайшего будущего, но для этого должны быть разработаны энергоэкономичные методы производства алюминия с целью получения хлорида алюминия и восстановления последнего до металла. Этот метод был уже опробован в ряде стран и дал основание для проектирования алюминиевых заводов большой мощности. Но выплавка алюминия в масштабах, сопоставимых с производством чугуна, стали и ферросплавов, еще не может быть реализована в самое ближайшее время, потому что эта задача должна решаться параллельно с разработкой соответствующих алюминиевых сплавов, способных конкурировать с чугуном, сталью и другими материалами из железорудного сырья.
Широкая распространенность кремния служит постоянным укором человечеству в смысле чрезвычайно низкой степени использования этого химического элемента в производстве материалов. Силикаты составляют 97% всей массы земной коры. И это дает основание утверждать, что именно они должны быть основным сырьем для производства практически всех строительных материалов и полуфабрикатов при изготовлении керамики, способной конкурировать с металлами. Надо, кроме того, принимать во внимание еще и огромные скопления промышленных отходов силикатного характера, таких, как "пустая порода" при добыче угля, "хвосты" при добыче металлов из руд, зола и шлаки энергетического и металлургического производства. И как раз эти силикаты необходимо в первую очередь превращать в сырье для строительных материалов. С одной стороны, это обещает большие выгоды, так как сырье не надо добывать, оно в готовом виде ждет своего потребителя. А с другой - его утилизация является мерой борьбы с загрязнением окружающей среды.
Список литературыСписок использованной литературы

1. Гейзенберг В. Физика и философия. Часть и целое. М., 1989.
2. Левитан Е.П. Астрономия: Учебник для 11 кл. - М.: Дрофа, 2000.
3. Поппер К. Логика и рост научного знания. М., 1983.